1. 19.  Irreversible electrokinetic repulsion at zero-Reynolds-number sedimentation.

        O. Schnitzer, A. S. Khair, and E. Yariv, Phys. Rev. Lett. 107, 278301 (2011).


18.  Concentration polarization and second-kind electrokinetic instability at an ion-selective surface     

        admitting normal flow.

        A. S. Khair, Phys. Fluids 23, 072003 (2011).


  1. 17.  Efficiently accounting for ion correlations in electrokinetic nanofluidic devices using density

       functional  theory.

        D. Gillespie, A. S. Khair, J. Bardhan, and S. Pennathur, J. Colloid Interface Sci. 359, pp. 520-529 (2011).


  1. 16.  A theoretical bridge between linear and nonlinear microrheology.

        R. DePuit, A. S. Khair, and T. M. Squires, Phys. Fluids 23, 063102 (2011).

2010

15.   Active microrheology: A proposed technique to measure normal stress coefficients of complex fluids.

         A. S. Khair and T. M. Squires, Phys. Rev. Lett. 105, 156001 (2010).

         Selected as an Editor’s Suggestion. Selected for a synopses in aphysics.aps.org

2009

14.   Ion steric effects on electrophoresis of a colloidal particle.

         A. S. Khair and T. M. Squires, J. Fluid Mech. 640, pp. 343-356 (2009).


  1. 13.   The dynamics and rheology of a dilute suspension of hydrodynamically Janus spheres in a linear flow.

         A. Ramachandran and A. S. Khair, J. Fluid Mech. 633, pp. 233-269 (2009).


12.   The role of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle.

         A. S. Khair and T. M. Squires, Phys. Fluids 21, 042001 (2009).        

2008

11.    Surprising consequences of ion conservation in electro-osmosis over a surface charge discontinuity.

         A. S. Khair and T. M. Squires, J. Fluid Mech. 615, pp. 323-324 (2008).


  1. 10.   Fundamental aspects of concentration polarization arising from non-uniform electrokinetic transport.

         A. S. Khair and T. M. Squires, Phys. Fluids. 20, 087102 (2008).

         Awarded 2009 Francois Frenkiel Award for Fluid Mechanics, Division of Fluid Dynamics, APS.

         Selected to appear in Virtual Journal of Nanoscale Science and Technology, Aug. 18 (2008).


  1. 9.    Hydrodynamics of “slip-stick” spheres.

         J. W. Swan and A. S. Khair, J. Fluid Mech. 606, pp. 115-132 (2008).


8.      Microrheology of colloidal dispersions: Shape matters.

         A. S. Khair and J. F. Brady, J. Rheol. 52, pp. 165-196 (2008).

2007

7.      On the motion of two particles translating with equal velocities in a colloidal dispersion.

          A. S. Khair and J. F. Brady, Proc. Roy. Soc. A. 463, pp. 223-240 (2007).

2006

6.    The “Einstein correction” to the bulk viscosity in n dimensions.

        A. S. Khair, J. Colloid Interface Sci. 302, pp. 702-703 (2006).


5.    Single particle motion in colloidal dispersions: A simple model for active and nonlinear mircorheology.

        A. S. Khair and J. F. Brady, J. Fluid Mech. 557, pp. 73-117 (2006).


  1. 4.    On the bulk viscosity of suspensions.

        J. F. Brady, A. S. Khair, and M. Swaroop, J. Fluid Mech. 554, pp. 109-123 (2006).

        Special issue to commemorate 50 year anniversary of the Journal.


  1. 3.   A new resistance function for two rigid spheres in a uniform compressible low-Reynolds-number flow.

        A. S. Khair, M. Swaroop, and J. F. Brady, Phys. Fluids. 18, 043102 (2006).

2005

2.    “Microviscoelasticity” of colloidal dispersions.

        A. S. Khair and J. F. Brady, J. Rheol. 49, pp. 1449-1481 (2005).

2001

1.     Mathematical simulation of ultra-thin polymeric film spreading dynamics.

        D. M. Phillips, A. S. Khair, and M. S. Jhon, IEEE Trans. Magnetics 37, pp. 1866-1868 (2001).

2011

21.   Transient phoretic migration of a permselective colloidal particle.

         A. S. Khair, J. Colloid Interface Sci. 381, pp. 183-188 (2012).

  1. 20.   Coupling electrokinetics and rheology: Electrophoresis in non-Newtonian fluids.

         A. S. Khair, D. E. Posluszny, and L. M. Walker, Phys. Rev. E 85, 016320 (2012).

2012

2013

  1. 22.  The bulk electroviscous effect.   

         A. S. Khair and A. G. Star, Rheol. Acta 52, pp. 255-269 (2013).

         Special issue devoted to novel trends in rheology.

27.   Expansions at small Reynolds number for the locomotion of a spherical squirmer.

        A. S. Khair and N. G. Chisholm, Phys. Fluids 26, 011902 (2014).

23.  Asymptotic analysis of double-carrier, space-charge limited transport in organic light-emitting diodes.   

         S. E. Feicht, O. Schnitzer, and A. S. Khair, Proc. R. Soc. A 469, 20130263 (2013).

24.    Diffusiophoresis of colloidal particles in neutral solute gradients at finite Peclet number.

         A. S. Khair, J. Fluid Mech. 731, pp. 64-94 (2013).

25.   Electrostatic forces on two almost touching nonspherical charged conductors.

        A. S. Khair, J. Appl. Phys. 114, 134906 (2013).

26.   The influence of inertia and charge relaxation on electrohydrodynamic drop deformation.

        J. A. Lanauze, L. M. Walker, and A. S. Khair, Phys. Fluids 25, 112101 (2013).

2014

28.   A continuum approach to predicting electrophoretic mobility reversals.

        R. F. Stout and A. S. Khair, J. Fluid Mech. 752, R1 (2014).

29.   Dynamics of a self-diffusiophoretic particle in shear flow.

        A. E. Frankel and A. S. Khair, Phys. Rev. E. 90, 013030 (2014).

30.   Use of impedance spectroscopy to determine double-layer capacitance in doped nonpolar liquids.

        B. A. Yezer, A. S. Khair, P. J. Sides, and D. C. Prieve, J. Colloid Interface Sci. 449, pp. 2 - 12 (2015).

34.  Moderately nonlinear diffuse charge dynamics under an AC voltage.

       R. F. Stout and A. S. Khair, Phys. Rev. E 92, 032305 (2015).


33. Nonlinear electrohydrodynamics of slightly deformed oblate drops.

       J. A. Lanauze, L. M. Walker, and A. S. Khair, J. Fluid Mech. 774, 245-266 (2015).

.

32.  Single particle motion in a sheared colloidal dispersion.

       A. S. Khair and T. M. Bechtel, J. Rheol. 59, pp. 429 - 471 (2015).


31.  Moving ion fronts in mixed ionic-electronic conducting polymer films.

       S. E. Feicht, G. Degen and A. S. Khair, AIChE J. 61, pp. 1447 - 1454 (2015).

       Article invited as best paper in the session “Mathematical Modeling of Transport Processes” at AIChE 2013 

       annual meeting.

2015

42. A mathematical model for electrical impedance spectroscopy of zwitterionic hydrogels.

      S. E. Feicht and A. S. Khair, Soft Matter 12, 7028 - 7037 (2016).


41. Discharging dynamics in an electrolytic cell.
     
S. E. Feicht, A. E. Frankel, and A. S. Khair, Phys. Rev. E 94, 012601 (2016).


40. Relaxation or breakup of a low-conductivity drop upon removal of a uniform DC electric field.

      J. A. Lanauze, L. M. Walker, and A. S. Khair, Phys. Rev. Fluids 1, 033902 (2016).


39. Self-generated electrokinetic fluid flows during pseudomorphic mineral replacement reactions.

      A. Kar, M. McEldrew, R. F. Stout, B. E. Mays, A. S. Khair, D. Velegol, and C. A. Gorski, Langmuir 32, 5233-5240

      (2016).


38. A Squirmer across Reynolds numbers.

      N. G. Chisholm, D. Legendre, E. Lauga, and A. S. Khair, J. Fluid Mech. 796, 233-256 (2016).


  1. 37.Determination of charge carrier concentration in doped nonpolar liquids by impedance spectroscopy in the presence of charge adsorption.

      B. A. Yezer, A. S. Khair, P. J. Sides, and D. C. Prieve, J. Colloid Interface Sci. 469, 325-337 (2016).


36. On a suspension of nearly spherical colloidal particles under large amplitude oscillatory shear flow.

      A. S. Khair, J. Fluid Mech. 791, R5 (2016).

      Selected by the Journal to be the subject of a “Focus on Fluids” article by R. H. Ewoldt.


35. Large amplitude oscillatory shear of the Giesekus model.

      A. S. Khair, J. Rheol. 60, 257-266 (2016).

2016

2017

51. The effects of impurity on the stability of Horizontal Ribbon Growth.

      J. Ke, A. S. Khair, B. Erik Ydstie. J. Cryst. Growth 480, 34-42 (2017).


50. Forced convection heat and mass transfer from a slender particle.

      L. M. Relyea and A. S. Khair. Chem. Eng. Sci. 174, 285-289 (2017).


49. The role of surface charge convection in the electrohydrodynamics and breakup of prolate drops.

      R. Sengupta, L. M. Walker, and A. S. Khair. J. Fluid Mech. 833, 29-53 (2017).


48. Diffuse charge dynamics in ionic thermo-electrochemical systems.

      R. F. Stout and A. S. Khair. Phys. Rev. E 96, 022604 (2017).


47. Formation of charge carriers in liquids.

      D. C. Prieve, B. A. Yezer, A. S. Khair, P. Sides, and J. Schneider, Adv. Colloid Interface Sci. 244, 21-35 (2017).


46. Drift volume in viscous flows.

      N. G. Chisholm and A. S. Khair, Phys. Rev. Fluids 2, 064101 (2017).


45. Linear viscoelasticity of a dilute active suspension.

      T. M. Bechtel and A. S. Khair. Rheol. Acta 56, 149-160 (2017).


44. Influence of ion sterics on diffusiophoresis and electrophoresis in concentrated electrolytes.

      R. F. Stout and A. S. Khair, Phys. Rev. Fluids 2, 014201 (2017).


  1. 43.Nonlinear relaxation modulus via dual-frequency medium amplitude oscillatory shear (MAOS): General

      framework and case study for a dilute suspension of Brownian spheroids.

      T. M. Bechtel and A. S. Khair, J. Rheol. 61, 67-82 (2017).


  1. 60.The role of Stefan-Maxwell fluxes on the dynamics of concentrated electrolytes.

      B. Balu and A. S. Khair.


59. Nonlinear viscoelasticity of a dilute suspension of Brownian spheroids under oscillatory shear.

      T. M. Bechtel and A. S. Khair.


58. Dispersion in steady two-dimensional flows through a parallel-plate channel.

      H. C. W. Chu, S. Garoff,  T. M. Przybycien, R. D. Tilton, and A. S. Khair


57. A higher-order slender-body theory for axisymmetric flow past a particle at moderate Reynolds number.

      A. S. Khair and N. G. Chisholm.

Under review

2018

56. Diffusiophoresis of charged colloidal particles in the limit of very high salinity.

      D. C. Prieve, S. M. Malone, A. S. Khair, R. F. Stout, and M. Y. Kanj. Proc. Natl. Acad. Sci. U. S. A.

      (doi.org/10.1073/pnas.1701391115).

      Invited issue on Interfaces and Mixing: Nonequilibrium transport across the scales. 


55. Effective viscosity of a dilute emulsion of spherical drops containing soluble surfactant.

      R. Sengupta, L. M. Walker, and A. S. Khair. Rheol. Acta (In press).


54. Reduced-order model for inertial locomotion of a slender swimmer.

      R. Mahalinkam, F. Gong, and A. S. Khair. Phys. Rev. E 97, 043102 (2018).


53. Strong deformation of the thick electric double layer around a charged particle during sedimentation or 

      electrophoresis.

      A. S. Khair, Langmuir 34, 876-885 (2018).

      Special issue on Early Career Authors in Fundamental Colloid and Interface Science


52. The partial drift volume due to a self-propelled swimmer.

      N. G. Chisholm and A. S. Khair.  Phys. Rev. Fluids 3, 014501 (2018).